The Performance Analysis of an Indoor Mobile Mapping System with Rgb-d Sensor

نویسندگان

  • G. J. Tsai
  • N. El-Sheimy
چکیده

Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل‌سازی صفحه‌ای محیط‌های داخلی با استفاده از تصاویر RGB-D

In robotic applications and especially 3D map generation of indoor environments, analyzing RGB-D images have become a key problem. The mapping problem is one of the most important problems in creating autonomous mobile robots. Autonomous mobile robots are used in mine excavation, rescue missions in collapsed buildings and even planets’ exploration. Furthermore, indoor mapping is beneficial in f...

متن کامل

Planar Surface Segmentation Using a Color-enhanced Hybrid Model for Rgb-d Camera-based Indoor Mobile Mapping Point Clouds

Point clouds acquired by RGB-D camera-based indoor mobile mapping system suffer the problems of being noisy, exhibiting an uneven distribution, and incompleteness, which are the problems that introduce difficulties for point cloud planar surface segmentation. This paper presents a novel color-enhanced hybrid planar surface segmentation model for RGB-D camera-based indoor mobile mapping point cl...

متن کامل

Mapping Walls of Indoor Environment using RGB-D Sensor

Inferring walls configuration of indoor environment could help robot “understand“ the environment better. This allows the robot to execute a task that involves inter-room navigation, such as picking an object in the kitchen. In this paper, we present a method to inferring walls configuration from a moving RGB-D sensor. Our goal is to combine a simple wall configuration model and fast wall detec...

متن کامل

Use of Consumer-grade Depth Cameras in Mobile Robot Navigation

Simultaneous Localization And Mapping (SLAM) stands as one of the core techniques used by robots for autonomous navigation. Cameras combining Red-Green-Blue (RGB) color information and depth (D) information are called RGB-D cameras or depth cameras. RGB-D cameras can provide rich information for indoor mobile robot navigation. Microsoft’s Kinect device, a representative low cost RGB-D camera pr...

متن کامل

Visual Odometry and Mapping for Autonomous Flight Using an RGB-D Camera

RGB-D cameras provide both a color image and per-pixel depth estimates. The richness of their data and the recent development of low-cost sensors have combined to present an attractive opportunity for mobile robotics research. In this paper, we describe a system for visual odometry and mapping using an RGB-D camera, and its application to autonomous flight. By leveraging results from recent sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015